Researcher Database

OHASHI Kazuto
IMCR Joing Usage/Research Support Center
Assistant Professor
Last Updated :2025/04/15

Researcher Profile and Settings

Researcher

  • Name

    OHASHI Kazuto

Profile and Settings

  • Name

    Ohashi, Kazuto

Alternate Names

  • Kazuto Ohashi

Affiliation

  • Gunma University, Assistant Professor
  • Gunma University, Institute for Molecular and Cellular Regulation IMCR Joint Usage/Research Support Center, Assistant Professor

Education

  • Apr. 2007, Mar. 2012

Research Experience

  • Jan. 2016, 9999, Gunma University, Institute for Molecular and Cellular Regulation, Assistant Professor, Assistant prof lv
  • Mar. 2013, Dec. 2015, The Scripps Research Institute, Research Associate, Researcher postdoc lv
  • Oct. 2012, Mar. 2013, Researcher postdoc lv

Research Activities

Research Areas

  • Life sciences, Applied molecular and cellular biology

Published Papers

  • Structural Analyses of a GABARAP∼ATG3 Conjugate Uncover a Novel Non-covalent Ubl-E2 Backside Interaction, Kazuto Ohashi; Takanori Otomo, 15 Aug. 2024
  • Modulations of the mTORC2-GATA3 axis by an isorhamnetin activated endosomal-lysosomal system of the J774.1 macrophage-like cell line., Maiko Sakai; Kohta Ohnishi; Masashi Masuda; Erika Harumoto; Teppei Fukuda; Aika Ohnishi; Shunsuke Ishii; Hirokazu Ohminami; Hisami Yamanaka-Okumura; Kazuto Ohashi; Eisuke Itakura; Kazuki Horikawa; Shigenobu Yonemura; Taichi Hara; Yutaka Taketani, Jul. 2024, Journal of clinical biochemistry and nutrition, 75, 1, 24, 32, Scientific journal
  • High levels of Tryptophan reduce cell wall or membrane stress tolerance in Saccharomyces cerevisiae., Kazuto Ohashi; Romanas Chaleckis, 22 Sep. 2021, Biosci. Biotechnol. Biochem., 85, 10, 2131, 2136, Scientific journal
  • Structural Studies of Mammalian Autophagy Lipidation Complex., Ohashi K,Otomo C,Metlagel Z,Otomo T, 2019, Methods Mol. Biol., 1880, 57, 75
  • Metabolomic Analysis of Yeast and Human Cells: Latest Advances and Challenges., Chaleckis R,Ohashi K,Meister I,Naz S,Wheelock CE, 2019, Methods Mol. Biol., 2049, 233, 245
  • Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex, Saikat Chowdhury,Chinatsu Otomo,Alexander Leitner,Kazuto Ohashi,Ruedi Aebersold,Gabriel C. Lander,Takanori Otomo, Oct. 2018, Proc. Natl. Acad. Sci. USA, 16, 115, 42, E9792, E9801
  • Kynurenine aminotransferase activity of Aro8/Aro9 engage tryptophan degradation by producing kynurenic acid in Saccharomyces cerevisiae, Kazuto Ohashi,Romanas Chaleckis,Masak Takaine,Craig E. Wheelock,Satoshi Yoshida, Sep. 2017, Sci. Rep., 7, 1, 12180
  • Identification and characterization of the linear region of ATG3 that interacts with ATG7 in higher eukaryotes, Kazuto Ohashi,Takanori Otomo, Jul. 2015, Biochem. Biophys. Res. Commun., 463, 3, 447, 452
  • Structural insights into E2-E3 interaction for LC3 lipidation, Zoltan Metlagel,Chinatsu Otomo,Kazuto Ohashi,Giichi Takaesu,Takanori Otomo, Mar. 2014, Autophagy, 10, 3, 522, 523
  • Bacterial pyruvate production from alginate, a promising carbon source from marine brown macroalgae, Shigeyuki Kawai,Kazuto Ohashi,Shiori Yoshida,Mari Fujii,Shinichi Mikami,Nobuyuki Sato,Kousaku Murata, Mar. 2014, J. Biosci. Bioeng., 117, 3, 269, 274
  • Secretion of Quinolinic Acid, an Intermediate in the Kynurenine Pathway, for Utilization in NAD + Biosynthesis in the Yeast Saccharomyces cerevisiae, Kazuto Ohashi,Shigeyuki Kawai,Kousaku Murata, Mar. 2013, Eukaryot. Cell, 12, 5, 648, 653
  • Identification and characterization of a human mitochondrial NAD kinase, Kazuto Ohashi,Shigeyuki Kawai,Kousaku Murata, Jan. 2012, Nat. Commun., 3, 1
  • NADPH regulates human NAD kinase, a NADP(+)-biosynthetic enzyme, Kazuto Ohashi,Shigeyuki Kawai,Mari Koshimizu,Kousaku Murata, Sep. 2011, Mol. Cell. Biochem., 355, 1-2, 57, 64
  • Structural Determinants of Discrimination of NAD(+) from NADH in Yeast Mitochondrial NADH Kinase Pos5, Takuya Ando,Kazuto Ohashi,Akihito Ochiai,Bunzo Mikami,Shigeyuki Kawai,Kousaku Murata, Aug. 2011, J. Biol. Chem., 286, 34, 29984, 29992

MISC

  • 抗酸化物質キヌレン酸増加の分子機構とその意義, Mar. 2024
  • 抗酸化物質キヌレン酸増加の分子機構とその意義, 大橋一登, 01 Mar. 2023, 57, 77, 78
  • 抗酸化物質キヌレン酸増加の分子機構とその意義, 大橋一登, Mar. 2022, No. 56, 72, 73
  • 抗酸化物質キヌレン酸増加の分子機構とその意義, 大橋一登, Mar. 2021, No. 55, 56, 57
  • 抗酸化物質キヌレン酸増加の分子機構とその意義, 大橋一登, Mar. 2020, No. 54, 58, 59
  • 抗酸化物質キヌレン酸増加の分子機構とその意義, 大橋一登, Mar. 2019, No.53, 63, 64
  • 抗酸化物質キヌレン酸増加の分子機構とその意義, 大橋一登, Mar. 2018, No.52, 66, 67
  • 出芽酵母キヌレニンアミノトランスフェラーゼ欠損株のトリプトファン感受性から示唆されるキヌレン 酸の機能, 大橋一登, Mar. 2018, No.52, 37, 37

Presentations

  • Identification of amino acids that enhance requirement for leucine in budding yeast, Kazuto Ohashi, 日本農芸化学会2023年度大会, 14 Mar. 2023
  • キヌレニンアミノトランスフェラーゼ遺伝子破壊株の構築とそのトリプトファン感受性, 生命科学系学会合同年次大会, Dec. 2017
  • 出芽酵母での過剰なトリプトファンによる ロイシンの相対的欠乏 , 大橋一登, 日本農芸化学会2022年度大会, 16 Mar. 2022
  • 過剰なトリプトファンによるアミノ酸インバランスが細胞壁応答に及ぼす影響, 大橋一登, 日本農芸化学会中部支部第189回例会ミニシンポジウム (オンライン発表), 12 Jun. 2021
  • Effect of Tryptophan accumulation on cell wall stress response, kazuto ohashi, 20 Mar. 2021
  • Study for amino acid imbalance induced by excess Trp in budding yeast, 大橋一登, 日本農芸化学会2020年度大会, 28 Mar. 2020
  • 高濃度トリプトファンによる細胞毒性の解析, 大橋一登, 第5回 群馬大学生体調節研究所 内分泌代謝シンポジウム, 14 Nov. 2019, 14 Nov. 2019, 15 Nov. 2019
  • 出芽酵母を用いた高濃度トリプトファンによるアミノ酸インバランスの解析, 大橋 一登、高稲 正勝、吉田 知史, 52回酵母遺伝学フォーラム, 2019
  • 出芽酵母における高濃度トリプトファンによるアミノ酸インバランスの解析, 大橋 一登、高稲 正勝、吉田 知史, 第9回Tor研究会, 2019
  • The cellular benefits for synthesizing kynurenic acid in Saccharomyces cerevisiae, Kazuto Ohashi, The 4th IMCR Symposium on Endocrine and Metabolism : At the Cutting Edge of Metabolic Regulation Research, 08 Nov. 2018, 08 Nov. 2018, 09 Nov. 2018
  • 過剰なトリプトファンによる細胞毒性の解析, 大橋一登, 日本農芸化学会2018年度大会, 2018
  • 出芽酵母における高濃度トリプトファン毒性の解析, 大橋一登、高稲正勝、吉田知史, 酵母遺伝学フォーラム, 2018
  • 出芽酵母高濃度トリプトファン毒性へのTORC1の関与, 大橋 一登、高稲 正勝、吉田 知史, 第8回Tor研究会, 2018

Awards

  • Mar. 2024
  • Feb. 2024

Research Projects

  • 01 Apr. 2020, 31 Mar. 2023, 20K05952
  • Study of cellular response to excess Tryptophan, Ohashi Kazuto, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Early-Career Scientists, Gunma University, 01 Apr. 2018, 31 Mar. 2020, Tryptophan (Trp) is an essential amino acid for living organisms, but excessive accumulation of Trp can be toxic. Also, it has been suggested that excessive accumulation of Trp is associated with various pathological conditions. However, the cause of toxicity due to excess Trp was unknown. In this study, we obtained the results showing that the cause of excessive Trp toxicity is inhibition of an intracellular signal transduction. Furthermore, it was suggested that the existence of a cellular response mechanism that eliminates excess Trp accumulation since degradation pathway of Trp and biosynthesis of organic acids which is necessary for the Trp degradation were required for tolerance to excess Trp., 18K14432

Social Contribution

Academic Contribution

  • 日本農芸化学会2017年度大会・一般講演座長, Academic society etc, Mar. 2017, Mar. 2017


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.